

三浦 詩乃, 准教授

MIURA Shino, Associate Professor
smiura746@g.chuo-u.ac.jp

マーシャル レオ, 助教

MARTIAL Léo, Research Associate
lmartial960@g.chuo-u.ac.jp

窪野 弘幸, 学生

KUBONO Hiroyuki, Student
a22.8wf8@g.chuo-u.ac.jp

中央大学, 理工学部

Chuo University, Faculty of Science and Engineering

Game Based Learning (GBL) とまちづくり

日本における若者参加型都市計画のゲーミフィケーション

3Dモデリングとゲーミフィケーションで体験する都市デザイン

GAME-BASED LEARNING (GBL) AND MACHIZUKURI
GAMIFICATION IN YOUTH PARTICIPATORY URBAN PLANNING IN JAPAN
Experiencing Urban Design through 3D Modeling and Gamification

目次

SUMMARY

序論

Introduction

1. 日本における参加型まちづくりの発展都

1. Evolution of Japan's participatory planning approach

2. 市計画のゲーミフィケーション

2. Gamification of urban planning

3. ゲーム型学習(GBL : Game-Based Learning)と空間的思考

3. Game-Based Learning (GLB) and spatial thinking

4. 若者による参加型都市計画

4. Youth participatory urban planning

5. ゲームを活用した参加型の取り組み

5. Game-Based participatory initiatives

6. 方法論：オープンソース型ワークショップ枠組みの提案

6. Methodology: Open-source workshop framework proposal

7. 結論

7. Conclusion

序論

INTRODUCTION

日本の
参加型都市計画は、
住民主体の
「まちづくり」
に基づく

Japan's
participatory urban planning
is rooted in **machizukuri**,
a bottom-up approach

まちづくりは、
時代とともに
デジタル技術を取り入
れて進化してきた

Machizukuri has evolved
by integrating
digital tools

世界的な
「都市の
ゲーミフィケーション」
と交差している

It now intersects
with global
urban gamification

ゲームの仕組みは、
学びと市民参加を促す
新たな手法と
なっている

Game mechanics foster
learning and
civic engagement

本研究は、
オープンソース技術
を活用し、
まちづくりと
ゲーム型学習 (GBL)
の融合を探る

This study explores
the fusion of machizukuri
and **game-based learning**
through open-source tools

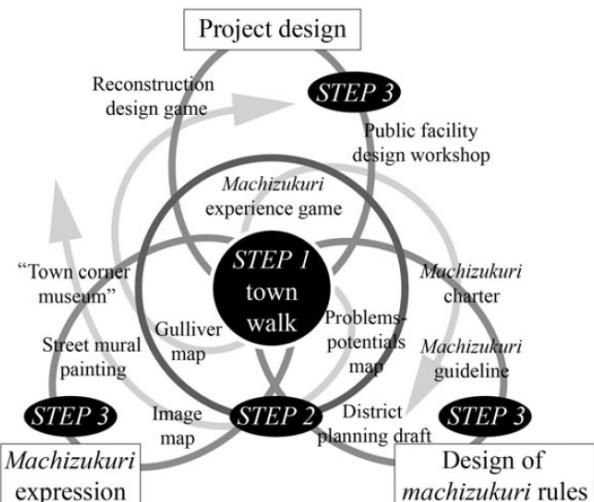
1

日本における参加型まちづくりの発展 EVOLUTION OF JAPAN'S PARTICIPATORY PLANNING APPROACH

定義と歴史的背景
まちづくりの三つの世代
新しいツール
参加促進のためのまちづくりのゲーミフィケーション

Definition and Historical Background
The Three Generations of Machizukuri
New Tools
The Gamification of machizukuri for enhanced engagement

既存の枠組み：伝統的なまちづくり


EXISTING FRAMEWORKS : TRADITIONAL MACHIZUKURI

起源（1960年代）

住民による都市問題への自発的対応として誕生。環境汚染、災害リスク、従来の都市計画の限界などへの対抗から生まれた。行政主導のトップダウン型計画から、住民主体のボトムアップ型プロセスへの転換を示した。

ORIGIN (1960S)

Emerged as citizen-driven responses to urban problems, especially environmental pollution, disaster risks, and gaps in traditional city planning. It represented a shift from **top-down governmental planning** to **bottom-up community-led processes**

第1世代

「まちづくり協議会」の設立、地区計画、環境・社会改善のための運動の形成

FIRST GENERATION

Formation of "Machizukuri Councils," district plans, and protest-inspired movements for environmental and social improvements

第2世代

住民参加の実験的応用。ワークショップ、協働設計、合意形成のための新しい手法の開発

SECOND GENERATION

Experimental application of community participation : development of workshops, collaborative design, and innovative consensus-building tools

第3世代

包括的な地域マネジメントへの統合。長期的な地域再生、災害後の再開発、協働管理の制度化に焦点を拡大

THIRD GENERATION

Integration into comprehensive area/community management; focus extends to long-term area revitalization, post-disaster redevelopment, and institutionalization of collaborative management

文化的・社会的重視

伝統的知識、地域文化、社会資本を、構想段階と実践管理の双方に統合

CULTURAL AND SOCIAL EMPHASIS

Integration of traditional knowledge, local culture, and social capital in both visioning and practical management.

持続可能性

市民・専門家・NPO・行政の連携を通じて、変化する都市環境に適応しつつ継続性を確保する仕組みを構築

SUSTAINABILITY

Partnerships between citizens, experts, NGOs, and local governments are cultivated to ensure continuity and adaptability in changing urban contexts

制度化

まちづくりの成果は、景観協定、地区計画、条例として制度化され、継続的な市民報告と改善プロセスに支えられている

INSTITUTIONALIZATION

Machizukuri outcomes are formalized in landscape agreements, district plans, and ordinances, supported by ongoing public reporting and refinement.

既存の枠組み：伝統的なまちづくり

EXISTING FRAMEWORKS : TRADITIONAL MACHIZUKURI

長所

- 地域との深い関与**：住民の直接的な関与により、地域への愛着、社会的結束、主体性を強化
- 柔軟性とレジリエンス**：多様な都市課題や状況に対応できる、地域に合わせた柔軟な解決策を可能にする
- 透明性の向上**：公開ワークショップや市民報告を通じて、利害関係者間の信頼と透明性を高める
- 持続的成果**：市民の意見を長期的な運営や政策に反映させ、持続性と一貫性を高める
- 教育的役割**：「民主主義の学校」として機能し、市民的スキルを育成し、多世代間の多様な主体を育む

PROS

- Deep Community Engagement** : Directly involves residents, resulting in stronger ownership, social cohesion, and place attachment
- Adaptable and Resilient** : Enables flexible, locally customized solutions adaptable to diverse urban challenges and contexts
- Enhanced Transparency** : Open workshops and public reporting foster transparency and trust between stakeholders
- Sustainable Outcomes** : Institutionalizes community input into long-term management and policy, enhancing sustainability and continuity
- Educational Role** : Functions as a “school of democracy,” building civic skills and empowering diverse actors across generations

短所

- 時間と資源の負担**：合意形成や反復的ワークショップは多大な時間・資源を要し、成果が出るまで時間がかかる
- 対立の可能性**：多様な主体の参加により、意見の衝突が生じ、異質なコミュニティでは合意形成が困難になる場合がある
- 不平等な参加**：発言力の強い個人や団体が他の参加者を圧倒し、代表性を損なうリスクがある
- 拡張性の限界**：地域固有・文脈依存の手法であるため、大規模都市や複雑な環境には適用しづらい
- 権限の曖昧さ**：住民の非公式な意見と行政の公式権限のバランスが難しく、責任範囲が不明確になりがち

CONS

- Time and Resource Intensive** : Consensus-building and iterative workshops can be resource-heavy and slow to produce concrete outcomes
- Potential for Conflict** : Pluralistic participation sometimes escalates disagreements, making consensus difficult in heterogeneous communities
- Unequal Participation** : Risk of dominant individuals or groups overshadowing less vocal participants, limiting representativeness
- Limited Scalability** : Highly localized, context-dependent methods may not scale easily to larger or more complex urban areas
- Ambiguous Authority** : Balancing informal resident input with formal government power can lead to unclear responsibilities

2

市計画のゲーミフィケーション GAMIFICATION OF URBAN PLANNING

市民参加の四つの次元
集合的学習と都市計画
シリアスゲームと都市開発シミュレーション
グローバルシミュレーションと特化型ミニゲーム

Citizen Participation in Four Dimensions
Collective Learning and Urban Planning
Serious Games and Urban Development Simulations
Global Simulations and Targeted Mini-Games

若者参加の困難

YOUTH PARTICIPATION CHALLENGES

若者参加の課題

構造的な障壁が実質的な参加を制限している
形式的な参加にとどまる危険性
自信の欠如と発言をためらう傾向
精神的ストレスの増大（コロナ禍で特に顕著）
デジタル格差によりオンライン参加が不平等に

Youth Participation Challenges

Structural barriers limit genuine involvement
Risk of tokenism in participatory projects
Confidence gap and reluctance to speak up
Mental health pressures, heightened during COVID-19
Digital divide: online platforms widen gaps

日本特有の（非）参加？

「恥」の文化により公の場での主体性が抑制される
「受け身的」態度が社会的調和として評価される
長期のコロナ制限により孤立が拡大
日本の若者の心理的苦痛が急増、特に女性で顕著
厳格な学校制度が自由な参加の余地を制限

Japanese Specific (Non-) Participation?

Shyness limits public initiative
Passiveness seen as social harmony
Prolonged COVID-19 restrictions increased isolation
Distress of Japanese youths rose sharply, esp. females
Rigid school system leaves little room for participation

ゲームと媒介

協力的なプレイが協調スキルを育成
ゲームは「保護的な媒介」として機能
アバターが不安を抱える若者に間接的な行動を可能にする
リスク：仮想世界への過剰依存

Games and Mediation

Collaborative play builds cooperation skills
Games act as a “protective mediation”
Avatars allow anxious youths to act indirectly
Risk : over-attachment to virtual worlds

Hart, 1992.

Children's Participation: From tokenism to citizenship

Eunkyung et al., 2023.

Deterioration of Mental Health in Children and Adolescents During the COVID-19 Pandemic

Fujihara et al., 2022

The impact of COVID-19 on the psychological distress of youths in Japan: A latent growth curve analysis

Doyon, 2000.

Shyness in the Japanese EFL class: Why it is a problem, what it is, what causes it, and what to do about it

Tisseron, 2011.

L'empathie, au cœur du jeu social (Empathy, at the Heart of Social Play)

Tisseron et al., 2012

L'enfant au risque du virtuel (The Child at Risk from the Virtual)

Tisseron et al. 2013

Les 4 atouts des jeux vidéo pour les adolescents (The Four Strengths of Video Games for Adolescents)

強み

STRENGTHS

現実のまちづくりと
仮想空間を結び付けた学習体験

A learning experience linking
real urban development with virtual space

ゲーミフィケーションによる
主体的参加

Active participation
through gamification

中学生対象の
教育的意義

Educational significance
for junior high school students

中学生対象

現地観察+ゲーミフィケーションを組み合わせた設計体験

Targeted at junior high school students

A design experience combining on-site observation with gamification

ねらい

フィールドワークで観察した課題を、3Dモデリングで解決策として提案する

Goal

To propose solutions via 3D modeling for issues observed during fieldwork

ミッション例: ベンチの課題を解決せよ

Mission example: Solve the bench problem

制約条件: 最低2個以上のベンチを公園エリアに追加配置は公園の敷地内

Constraints: Add at least two benches within the park area. Placement must be inside the park grounds.

解決策: 二か所のベンチが孤立しているので集団で会話ができるように数を増やして対面にもう一つずつ配置する

Solution: Since two benches are isolated, increase the number and place one more facing each to allow group conversations.

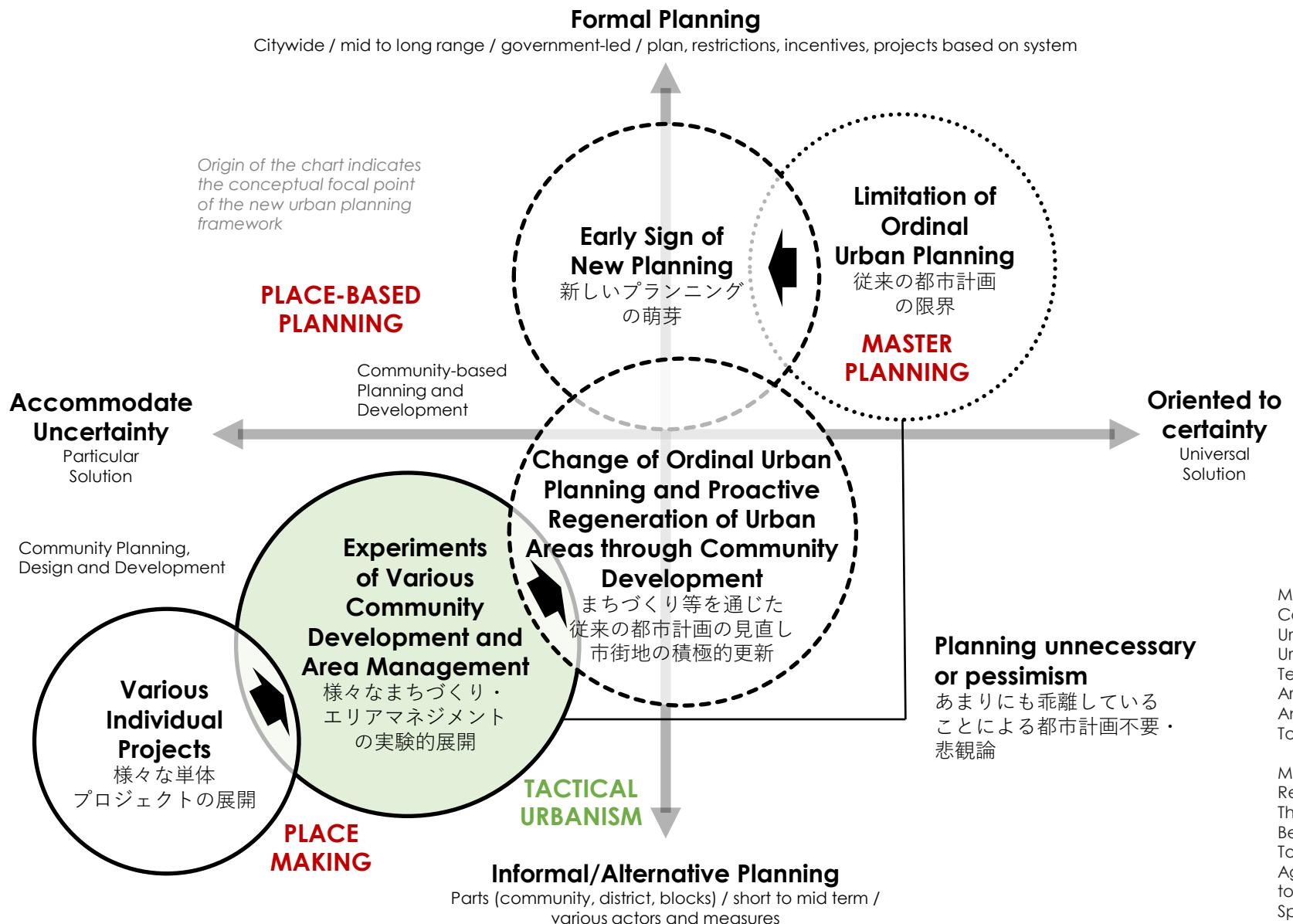
建物ではなく

公共空間特化公園内に3Dモデルアセット(3D models assets)を配置して公共空間をデザイン

Focus not on buildings but on public space

Place objects (3D models assets) within the park to design public space

中学生が感じた課題をその場で設計提案に反映するプロセスゲームのようなミッション形式で制約条件下の創造性を発揮


A process in which junior high school students immediately reflect the issues they perceive into design proposals, expressing creativity under given constraints through game-like mission formats

Tactical urbanism の small project から big project に繋げる初步プロセス体験
An introductory experience of progressing from small projects to big projects in **tactical urbanism**

コミュニティ主体の取り組みによる都市計画

URBAN PLANNING THROUGH COMMUNITY BASED INITIATIVES

3

GAME-BASED LEARNING (GBL)と空間的思考

GAME-BASED LEARNING AND SPATIAL THINKING

ゲーム型学習
デジタル・プレイスメイキング
ビデオゲームと空間的思考

Game-based learning
Digital placemaking
Video games and spatial thinking

より良い建築家になるために、なぜビデオゲームを遊び、デザインすべきなのか

WHY YOU SHOULD PLAY AND DESIGN VIDEO GAMES TO BECOME A BETTER ARCHITECT

1. 手と目の協調性を高める

コントローラー操作で反応速度と正確性を向上

1. ENHANCE HAND-EYE COORDINATION

Boosts reaction time and precision through controller-based gameplay

2. 創造的な発想を得る

想像的な環境や建築スタイルを探求

2. DISCOVER CREATIVE INSPIRATION

Explores imaginative environments and architectural styles

3. 3次元認識を改善する

三次元空間や奥行きの理解を強化

3. IMPROVE 3D PERCEPTION

Strengthens understanding of three-dimensional space and depth

4. デジタルスキルを育成する

デジタルモデルの操作や活用に慣れる

4. CULTIVATE DIGITAL SKILLS

Builds familiarity with navigating and manipulating digital models

5. 社会的つながりを促す

仲間とのチームワークやコミュニケーションを促進

5. ENCOURAGE SOCIAL CONNECTIONS

Facilitates teamwork and communication with like-minded peers online

6. 戦略的思考を養う

問題解決力と柔軟な意思決定を強化

6. DEVELOP STRATEGIC THINKING

Encourages problem-solving and adaptive decision-making

7. ストレスを軽減する

日常のプレッシャーからのリラックス手段を提供

7. REDUCE STRESS

Offers a relaxing escape from daily work pressures

8. 認知の持続性を高める

精神的挑戦を通じて頭脳を鋭く保つ

8. PROMOTE COGNITIVE LONGEVITY

Keeps the mind sharp and perceptive through mental challenges

9. 人格とリーダーシップを育む

チームワークとリーダー育成の機会を提供

9. BUILD PERSONALITY AND LEADERSHIP

Provides opportunities for teamwork and leadership development

10. 楽しさと充実感

ゲームを楽しい・有益な余暇活動として認識

10. ENJOYMENT AND FUN

Recognizes gaming as a pleasurable, rewarding leisure activity

Gerber, 2019. The Architectonics of Game Spaces. Or, why you should Play and Design Video Games to become a better Architect
Delaney, 2019. Democracy, Video Games, and Urban Design: Minecraft as a Public Participation Tool
Pearson, 2019. Video Game Urbanism: How we Design Virtual Game Spaces to Engage new Audiences with the Architecture of Tomorrow
Pearson, 2020. A machine for playing in: Exploring the videogame as a medium for architectural design
Sauvé et al., 2022. The impact of digital media on children's intelligence (...)

4

若者による参加型都市計画 YOUTH PARTICIPATORY URBAN PLANNING

周縁化からエンパワーメントへ
参加に関する理論的および実践的アプローチ
創造的・マイカー志向のアプローチ

From Marginalization to Empowerment
Theoretical and Practical Approaches to Participation
Creative and Maker-Centered Approaches

目的

OBJECTIVES

ハートの参加のはしごは、若者が参加型プロセスにどの程度深く関与しているのかを理解するための枠組みを提示している
Hart's Ladder of participation provides a framework to understand how deeply young people are involved in participatory processes

関与
Involvement

未関与
Non-involvement

8. 子どもが主体的に取りかかり、大人と一緒に決定する 8. Child initiated, shared decisions with adults

7. 子どもが主体的に取りかかり、子どもが指導する 7. Child-initiated and directed

6. 大人がしけけ、子どもと一緒に決定する 6. Adult initiated, shared decisions with children

5. 子どもが意見を求められ、情報を得る 5. Consulted and informed

4. 子どもが仕事を任せられ、情報を得る 4. Assigned and informed

3. 形だけの参加 3. Tokenism

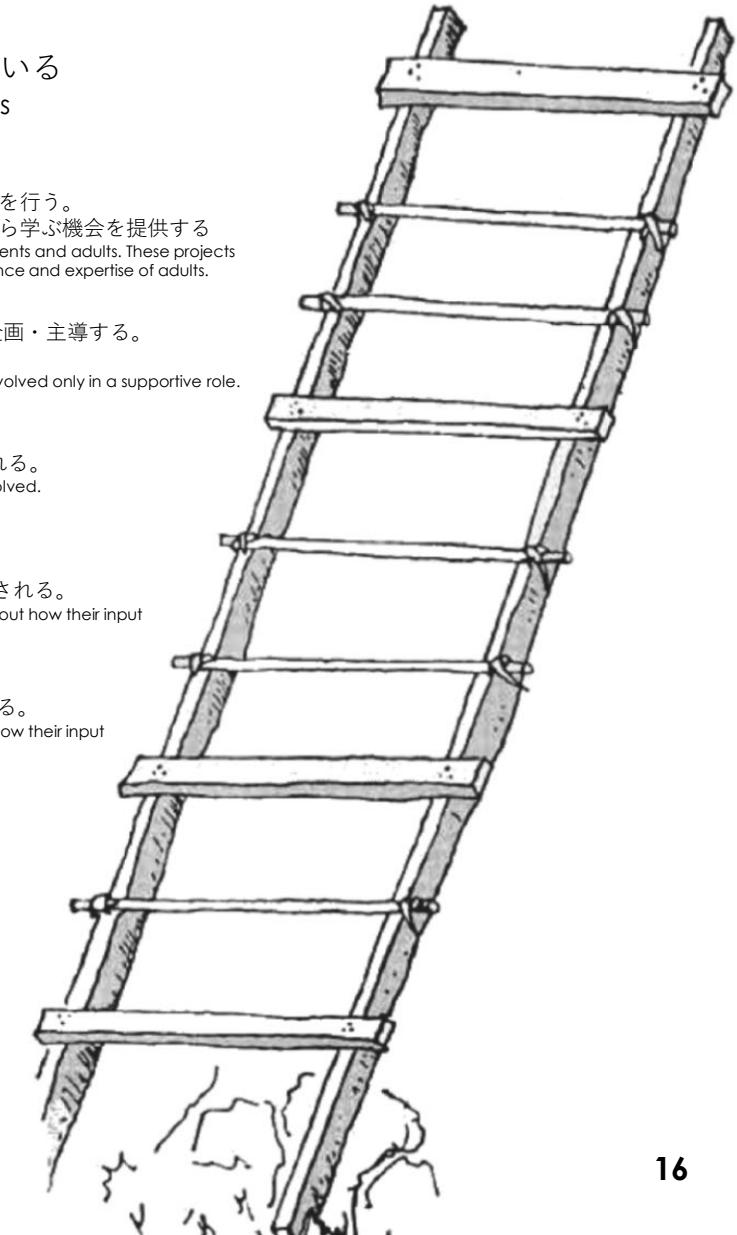
2. お飾り参加 2. Decoration

1. 繰り参加 1. Manipulation

子どもたちが主体的にプロジェクトや授業などを企画し、大人と共に意思決定を行う。
これらの活動は、子どもたちに力を与えると同時に、大人の経験や専門知識から学ぶ機会を提供する
Projects, classes, or activities are initiated by students, and decision making is shared among students and adults. These projects empower students while at the same time enable them to access and learn from the life experience and expertise of adults.

子どもたち自身が、子どもたちの関心に焦点を当てたプロジェクトや授業などを企画・主導する。
大人は支援的な役割のみを担う。
Students initiate and direct a project, class, or activity focused only on student concerns. Adults are involved only in a supportive role.

プロジェクトや授業などは大人が主導して始めるが、意思決定は子どもたちと共有される。
Projects, classes, or activities are initiated by adults, but the decision making is shared with the students involved.


子どもたちは大人が企画・運営するプロジェクトや授業などに助言を行う。
自分たちの意見がどのように使われ、最終的にどのような決定がなされるかについて知らされる。
Students give advice on projects, classes, or activities designed and run by adults. The students are informed about how their input will be used and the outcomes of the decisions made by adults.

子どもたちは大人が企画・運営するプロジェクトや授業などに助言を行う。
自分たちの意見がどのように使われ、最終的にどのような決定がなされるかについて知らされる。
Students give advice on projects, classes, or activities designed and run by adults. The students are informed about how their input will be used and the outcomes of the decisions made by adults.

子どもたちは意見を持つように見えるが、
実際には自分たちの行動や参加方法をほとんど選ぶことができない。
Students appear to be given a voice, but in fact have little or no choice about what they do or how they participate.

子どもたちは、大人が決めた目的を間接的に支援するために利用される。大人は、
その目的が子どもたちの発案であるとは装わない。目的も決定もすべて大人によって行われる。
Students are used to help or bolster a cause in a relatively indirect way; adults do not pretend that the cause is inspired by students. Causes are determined by adults, and adults make all decisions.

大人は子どもたちが発案したように見せかけて、
自分たちの目的を支援させる。
Adults use students to support causes by pretending that those causes are inspired by students.

5

GBLを活用した参加型の取り組み GBL PARTICIPATORY INITIATIVES

国際的な取り組み
日本における取り組み
ゲームエンジンと都市計画
オープンソースの価値：Godot

International initiatives
Japanese initiatives
Game engines and urban planning
The open-source value : Godot

海外の取り組み

OVERSEAS INITIATIVES

Block by Block

UN-HabitatとMojangの協働

BLOCK BY BLOCKTM

若者や地域を支援

世界各地で公共空間を設計

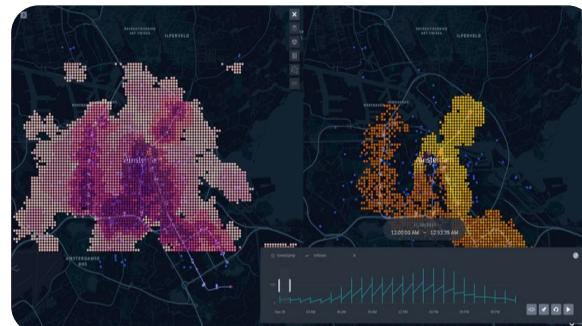
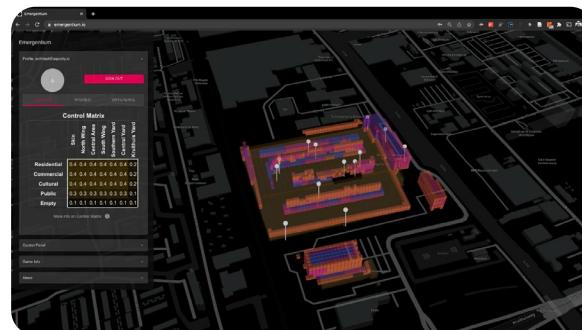
UN-Habitat + Mojang project

Empower youth and communities

Public space design worldwide

EquiCity

計画のためのシリアスゲーム



公平性と持続可能性を重視

市民と行政をつなぐ

Serious gaming for planning

Focus on equity and sustainability

Link citizens and planners

Mini is beautiful

ミニゲームは複雑な都市問題を理解しやすくする

協働と学び合いを促す

シンプルさが複雑さを映すことを示す

Mini-games make complex urban issues easier to grasp

They encourage collaboration and shared learning

The experience shows that simplicity reveals complexity

日本の取り組み

JAPANESE INITIATIVES

伝統的なまちづくり枠組み

段階的な市民参加
町歩き・施設設計・ルールづくり
共同体験を重視

Traditional Machizukuri Framework

Step-based citizen participation
Town walks, facility design, rules
Focus on collective experience

まちづくりデザインゲーム

ボードゲーム形式の議論
将来像の可視化
合意形成を支援

Machizukuri Design Game

Board-game style discussions
Visualize future urban plans
Support consensus building

佐藤 滋

志村秀明
内田奈美
関庭伸
川原晋
真野洋介
有賀隆

学研出版社

まちづくりゲームカタログ

参加型ツールの集約
創造的な計画を促進
地域参加に活用

Machizukuri Game Catalog

Collection of participatory tools
Encourage creativity in planning
Useful for community engagement

学研出版社

マイクラでまちづくり!!

Minecraftで都市設計
子どもと市民が協働
大規模な参加型イベント

Machizukuri with Minecraft !!

Use Minecraft for city design
Children and citizens co-create
Large-scale participatory events

UNITYとUNREALは一般市場を大きく支配している

UNITY and UNREAL largely dominate the mass market

1

利用者が多くコミュニティが大きい
クロスプラットフォームに対応
豊富なアセットストア
ライセンス問題がある
大規模AAAには不向き

Widely used, large community
Cross-platform flexibility
Rich asset store
Licensing controversy
Less suited for very large AAA projects

2

UNREAL
ENGINE

AAA向けの高品質グラフィック
VR・ARに強い
商業成功まで無料
学習難易度が高い
ファイルが大きく動作が重い

High-quality graphics for AAA games
Strong VR/AR support
Free until commercial success
Steep learning curve
Large file size, heavy performance

GODOTは急速に成長している

GODOT is rapidly growing

3

GODOT
Game engine

無料・オープンソース
軽量で高速
2Dに強く3Dも成長中
コミュニティ規模が小さい
高度なアセットが少ない

Free and open-source
Lightweight and fast
Strong for 2D, growing in 3D
Smaller community
Fewer advanced assets

初心者にやさしい
2D・ドット絵ゲームに最適
ドラッグ＆ドロップとスクリプト両方対応
3D機能は限定的
エクスポートには有料ライセンス

Beginner-friendly
Ideal for 2D and pixel-art games
Supports drag-and-drop and scripting
Limited 3D support
Paid license required for export

コード不要
プロトタイピングが迅速
ブラウザ上で利用可能
2Dに限定
サブスクリプション制

No coding required
Fast prototyping
Browser-based tools
Limited to 2D
Subscription model

無料
オープンソース
ビジュアルイベントシステム
3D機能は限定的
エクスポートには有料ライセンス

Free
Open-source
Visual event system
Weaker performance for large projects
Fewer professional features

なぜオープンソースソフトウェアなのか？

WHY OPEN SOURCE SOFTWARES ?

0円の予算
で適用可能な枠組み

Cost-free
applicable framework

カスタマイズと柔軟性
オープンソース (OS) ツールは、
特定のニーズに適応可能

Customization & Flexibility
Open-source (OS) tools
are adaptable to specific needs

学習効果の向上
多様な実装を試行することで、
より深い理解を促す

Enhanced Learning
Encourages deeper understanding
through experimentation with
different implementations

コスト効率
ソリューションの
拡張に経済的

Cost Efficiency
Economical for
scaling up solutions

幅広い機能
現代の業務要件は、
単一の商用ソフトの範囲を
超えることが多い

Broader Capabilities
Modern job requirements
often exceed the scope of single
proprietary software

相互運用性
GISやさまざまな
アプリケーションと容易に統合

Interoperability
Easy integration with GIS
and various applications

オープンデータ支援
OSツールはオープンデータや
オープン規格の普及を推進

Support for Open Data
OS tools drive open data
and open standards adoption

持続可能性
長期的な解決策の実現を後押し

Sustainability
Promotes long-term
viability of solutions

6

方法論 オープンソース型ワークショップ枠組みの提案

METHODOLOGY
OPEN-SOURCE WORKSHOP FRAMEWORK PROPOSAL

第1段階：データ収集
第2段階：3Dモデリングとデータ準備
第3段階：協働的コーデザイン
第4段階：ゲームエンジンへの統合とインタラクション
第5段階：実装と評価

Phase 1 : Data Acquisition
Phase 2 : 3D Modeling and Data Preparation
Phase 3 : Collaborative Co-Design
Phase 4 : Game Engine Integration and Interaction
Phase 5 : Implementation and Evaluation

目的

OBJECTIVES

公共空間の価値を体験しながら、
3Dモデリングソフトを楽しんで、
自らが都市空間の担い手である
ことに気づいてもらう

To allow students to experience the value of public spaces while enjoying 3D modeling software, and to make them aware that they themselves are actors in shaping urban spaces.

都市計画・都市デザイン、 まちづくり関連教育貢献

Contribution to education related to urban planning, urban design, and community development

3Dモデルソフトの 評価・改善案考案

Evaluation and improvement proposals for 3D modeling software

Top : Jolma Architects : How public open space reactivates the city, Superkilen park, Copenhagen (Photo Iwan Baan)
Middle : Public walking tours hosted by the Danish Architecture Center (Photo Danish Architecture Center, 2023)
Bottom : GodotCon 2024 Berlin, Conference for the Godot open-source game engine community

中学生に求めるもの、設計レベル

EXPECTATIONS FOR JUNIOR HIGH SCHOOL STUDENTS, DESIGN LEVEL

オブジェクトの設置

Placement of objects

それに伴う空間への影響評価・考察

Assessment and consideration of the spatial impacts that accompany placement

公共空間への関心と課題発見の習慣化、
経験設計やデザイン提案に際しては最低限の常識のクリアをミッションに設定

Fostering interest in public spaces and cultivating the habit of identifying issues.
Missions are set to ensure clearing a minimum level of common-sense standards in design proposals.

「Tactical Urbanism」に基づいた実現可能なアイデアの
具体化第一段階としてオブジェクトの設置プロセスの経験

Concretization of feasible ideas based on **Tactical Urbanism**;
as a first step, gaining experience with the process of object placement

多角的な視点から解決策を検討する思考力

Developing the ability to consider solutions from **multiple perspectives**

ADDIEモデル

ADDIE MODEL

ADDIEモデルは、教育設計や研修開発の基本となるフレームワークで、以下の5段階で構成されています

The ADDIE model is a fundamental framework for instructional design and training development, consisting of five stages

ステップ1：分析

学習者の特徴や学習課題を明確にする

PHASE 1 : ANALYSIS

Identify learner needs and define learning objectives

ステップ2：設計

学習目標や評価方法、教材構成を計画する

PHASE 2 : DESIGN

Plan learning goals, structure, and assessment methods

ステップ3：開発

教材や学習コンテンツを具体的に制作する

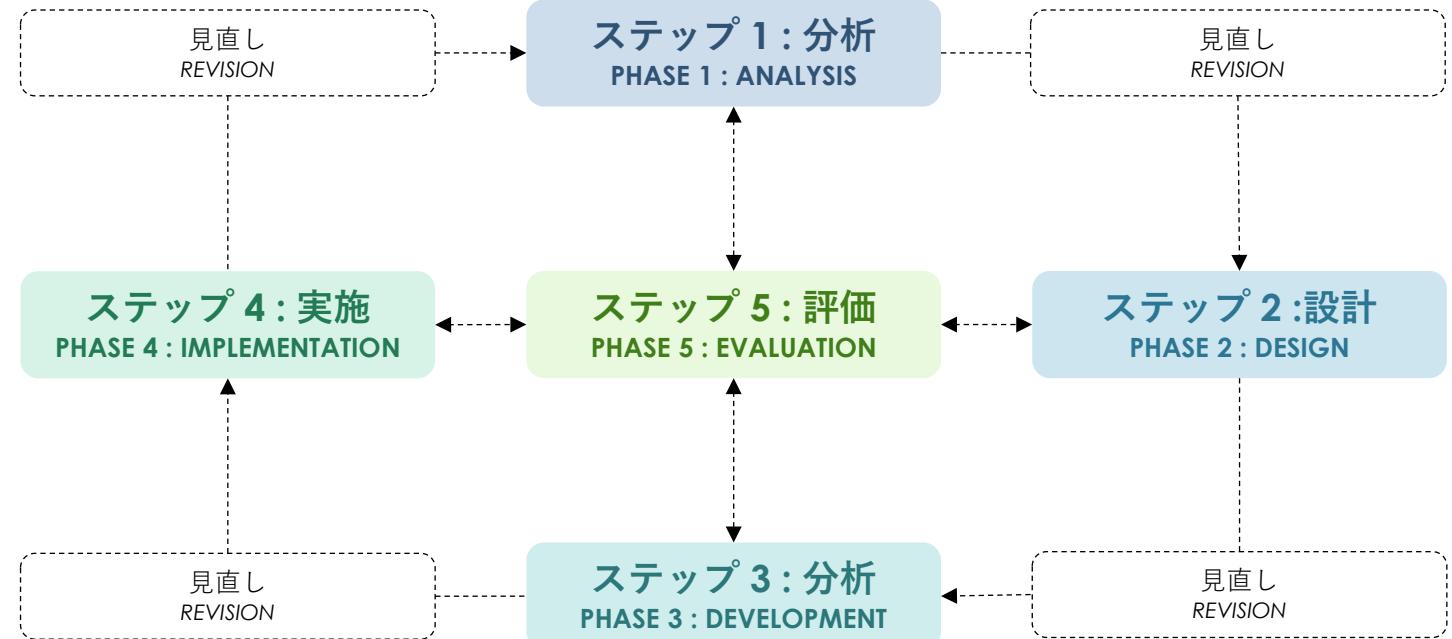
PHASE 3 : DEVELOPMENT

Create instructional materials and content

ステップ4：実施

学習活動を実際に行う

PHASE 4 : IMPLEMENTATION


Deliver and manage the learning process

ステップ5：評価

成果を確認し、改善点を特定する

PHASE 5 : EVALUATION

Assess outcomes and refine the design for improvement

ADDIEモデルに基づく方法論

METHODOLOGY BASED ON THE ADDIE MODEL

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

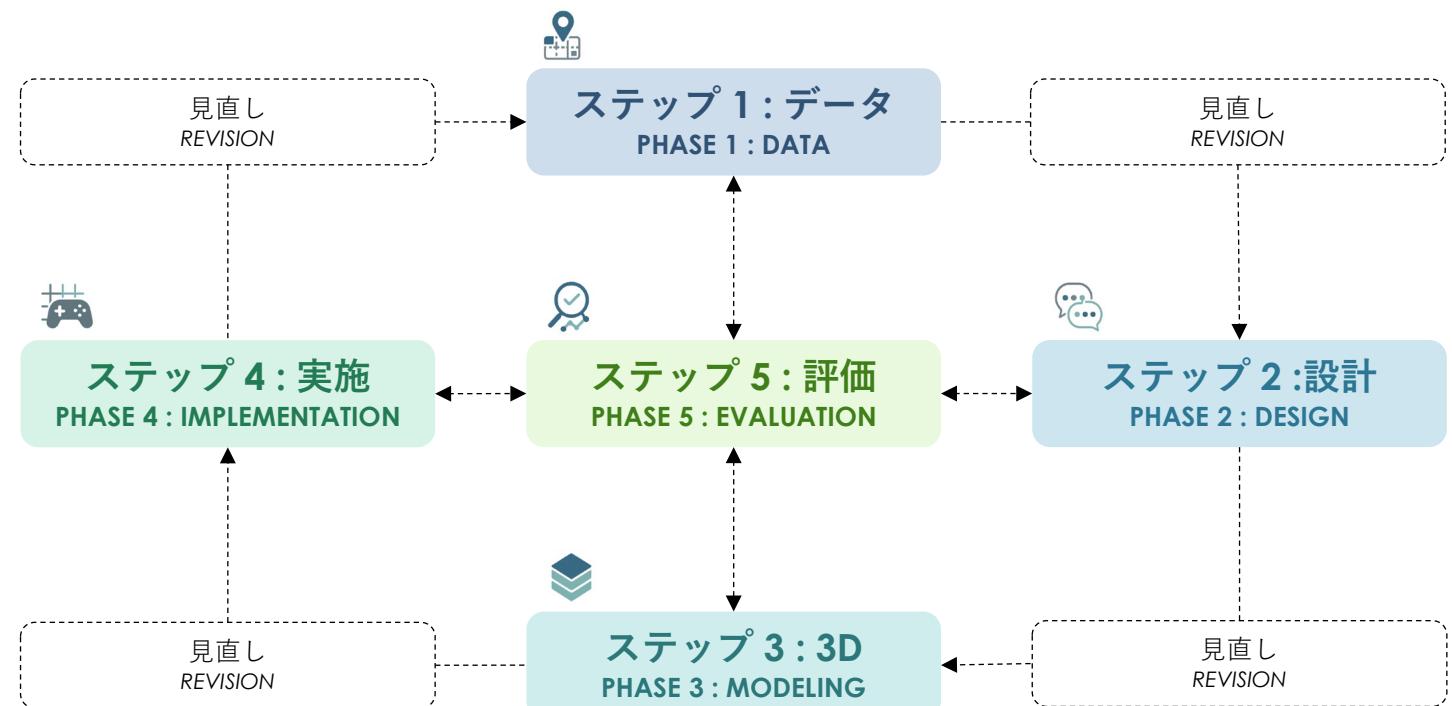
Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment



ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

本ワークショップについて

ABOUT THIS WORKSHOP

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

フィールドワーク用紙 Fieldwork sheets

コンピュータ* Computers *

虎の巻 ** Cheat sheet **

アンケート用紙 Questionnaire sheets

* グループごとに1台、Windows/MacOS、キーボードとマウス付き
* One per group, Windows / MacOS, keyboards and mouses

** 操作コマンドの簡易一覧
** Quick list of operation commands

準備物 (再確認)

全体構成

オリエンテーション (10分)

自己紹介、目的、経緯、概要

3Dモデリング・フィールドワーク (15分)

3Dモデリングソフトでできること、FWでの注目ポイント

フィールドワーク (60分)

写真や紙に記録

移動と休憩 (40分)

操作チュートリアル、チーム分け (60分)

ソフトの基本的な操作説明 (動画)

用紙配布 (cheat sheetの配布)

3Dモデリング体験 (120分)

FWでの知見を活かして、ミッションに挑戦

発表、ディスカッション (15分)

工夫した点等

アンケート、振り返り (15分)

内容は下記記載

クロージング (5分)

講評と挨拶

計5時間40分

Overall Structure

Orientation (10 min)

Self-introductions, objectives, background, overview

3D Modeling & Fieldwork (15 min)

Key observation points during fieldwork

Fieldwork (1 hour)

Recording through photos or notes on paper

Transfer and Break (40 min)

Operation Tutorial, Team Division (1 hour)

Basic software tutorial (video)

distribution of handouts (cheat sheet)

3D Modeling Experience (2 hours)

Applying insights from fieldwork to tackle missions

Presentations & Discussion (15 min)

Points of ingenuity, etc.

Questionnaire & Reflection (15 min)

Content described below

Closing (5 min)

Feedback and closing remarks

Total 5 hours and 40 minutes

現地観察と記録

FIELD OBSERVATION AND DOCUMENTATION

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

場所提案

神奈川県横浜市西区

(現地 + 屋内スペース)

みなとみらい, 高島中央公園

開発余地のあるキング軸に位置し、
子供の目線で都市空間を評価しやすい公園

Location proposal

Kanagawa, Yokohama, Nishi Ward

(on-site + indoor space)

Minato Mirai, Takashima Chuo Park

Located along the King Axis,
which still has potential for development,
and it is a park where urban space can be
easily evaluated from a child's perspective

写真撮影と場所分析のグループ散策

参加者がグループで現地を歩き、
写真撮影と観察を通して空間の特徴を
分析する

Group walk with site photography and analysis

Participants explore the site together,
taking photographs and analyzing spatial
characteristics through direct experience.

データ処理パイプライン

DATA PROCESSING PIPELINE

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

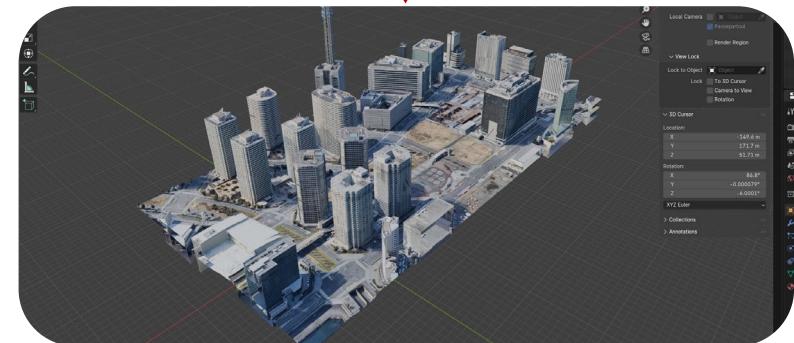
Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

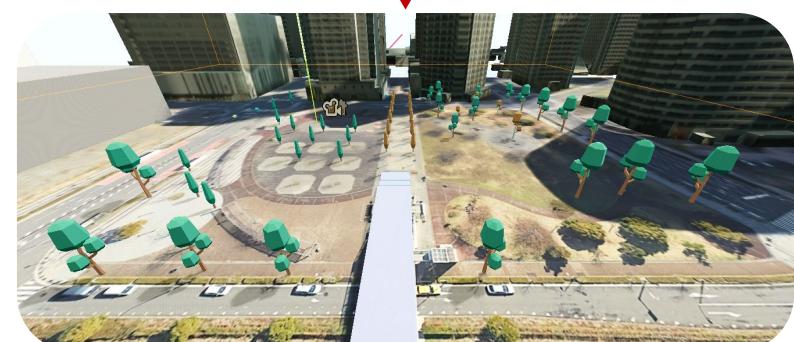
成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement


PLATEAU データをダウンロードする

Download **PLATEAU** open data


Blender でデータを抽出・書き出す

Extract and export data with **Blender**

Godot にデータをインポートする

Import data in **Godot** game engine

ベースモデル上に編集可能な3Dアセットを追加する
Adding and editing 3D assets on the base model

目標に基づくデザイン制作

GOAL-ORIENTED DESIGN DEVELOPMENT

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION
First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT
Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT
Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION
Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION
Assess outcomes and refine the design for improvement

参加者向けミッション例

ワークショップでは対象参加者が中学生なのでミッション形式でデザインする物を複数指定予定。

Example missions for participants

Since the workshop participants are junior high school students, several design tasks will be assigned in the form of missions.

ミッションの例 (各々制約条件を複数設ける)

- 1 : 木陰のある空間をデザインせよ
- 2 : 滞在したくなるベンチを設置せよ
- 3 : 涼しさを感じる仕掛けを入れよ
- 4 : ピクニックしたくなる広場をつくれ
- 5 : マーケットができる空間をデザインせよ
- 6 : 子供が楽しめる空間をつくれ

Missions examples

(each will include multiple design constraints)

- 1: Design a space with shade from trees
- 2: Install benches that make people want to stay
- 3: Add features that create a feeling of coolness
- 4: Create a plaza that invites picnics
- 5: Design a space suitable for a small market
- 6: Create a space where children can have fun

木陰のある空間
をデザインせよ

Design a space with shade from trees

滞在したくなる
ベンチを設置せよ

Install benches that make people want to stay

涼しさを感じる
仕掛けを入れよ

Add features that create a feeling of coolness

目標に基づくデザイン制作

GOAL-ORIENTED DESIGN DEVELOPMENT

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

スコア

各ミッションには条件に応じたスコア加算を設定し、クリア条件達成をめざす

Score

Each mission is assigned score points based on conditions and participants aim to achieve the completion requirements

木陰のある空間をデザインせよ

20点

ねらい ヒートアイランド対策、夏の快適性アップ

制約条件

- 既存の樹木に加えて新たに「木を3本以上」配置
- 休憩できるエリアの近くに木陰を作る
- 歩行者の導線を妨げないように配置
- 木の種類も考慮

5点
5点
5点
5点

DESIGN A SPACE WITH SHADE FROM TREES

20 pts

Goal Mitigate the heat island effect and improve summer comfort

Constraints

- Place at least 3 new trees in addition to existing ones
- Create shaded areas near resting spaces
- Arrange them so as not to obstruct pedestrian routes
- Consider tree species

5 pts
5 pts
5 pts
5 pts

LEVEL OF DETAIL (LOD) の4段階、難易度の4段階

FOUR LEVELS OF LEVEL OF DETAIL (LOD), FOUR LEVELS OF DIFFICULTY

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION
First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT
Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT
Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION
Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

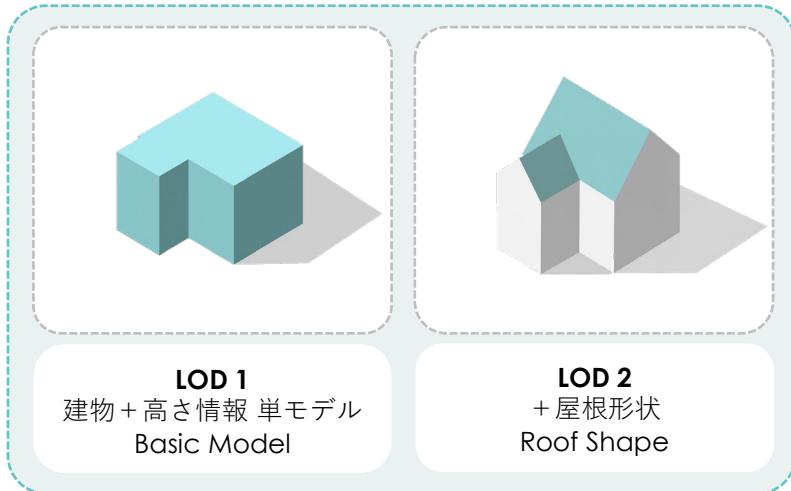
PHASE 5 : QUESTIONNAIRE AND REFLECTION
Assess outcomes and refine the design for improvement

協働

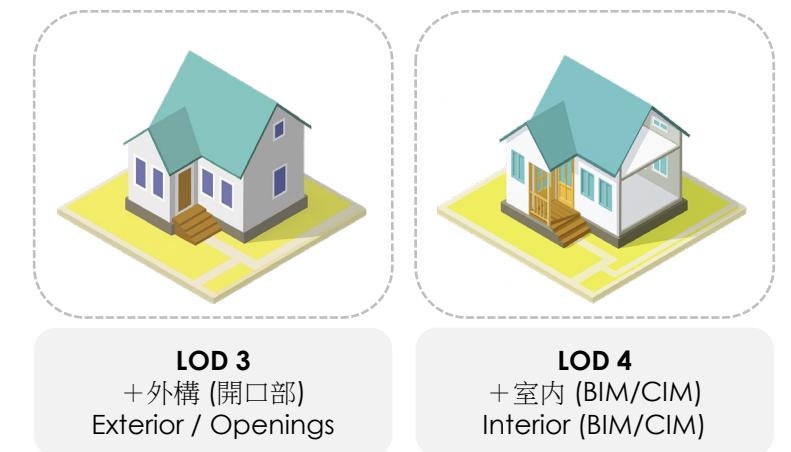
参加者同士の協働や議論を促すために、3~5名のグループを編成します。各グループは独自のアイデアやプロジェクトを発案する機会を持ちます。

Collaboration

To encourage collaboration and discussion among participants, groups of three to five students will be formed. Each group will have the opportunity to develop its own original ideas and projects.


難易度レベル

参加者の年齢や専門レベルに応じて、定義された LEVEL OF DETAIL(LOD)*に基づく4段階の難易度を設定できます。子どもや中高生向けのワークショップでは、LOD1およびLOD2に限定します。


Levels of Difficulty

Depending on the students' age and level of expertise, four levels of difficulty based on defined Levels of Detail (LOD)* can be offered in the workshop. Workshops for children and teenagers will be limited to LOD 1 and LOD 2.

*MLIT PLATEAU LOD レベル

ワークショップの範囲 WORKSHOP SCOPE

大学レベル
UNIVERSITY LEVEL

専門レベル
PROFESSIONAL LEVEL

空間構成

SPATIAL COMPOSITION

ステップ 1: 現地観察と記録 フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作 参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング 共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索 設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り 成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

ワークショップの範囲

WORKSHOP SCOPE

初級

アセットの収集
基本的な空間構成

BEGINNER

Assets compilation
Basic spatial
composition

中級

アセットの収集
高度な空間構成

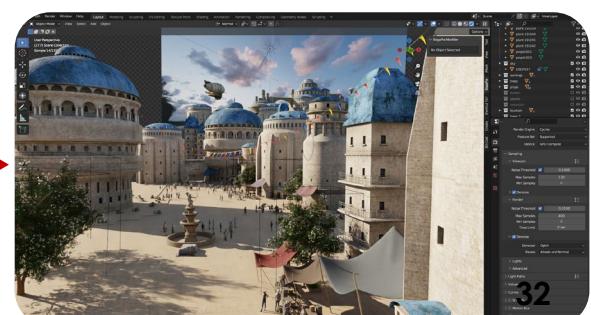
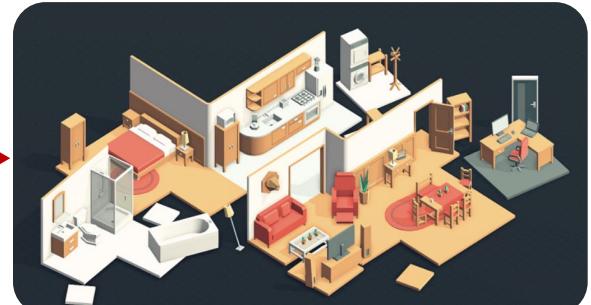
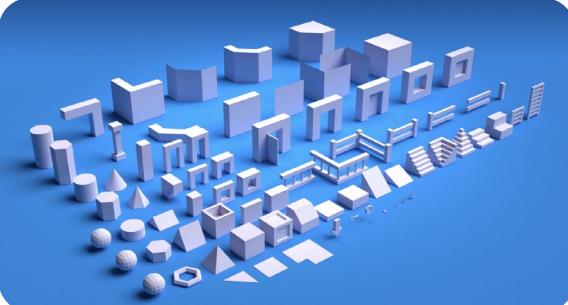
INTERMEDIATE

Assets compilation
Advanced spatial
composition

上級

Grey boxing (Godot),
アセットの置換、
テクスチャリング

ADVANCED




Grey boxing (Godot),
asset replacement,
texturing

最上級

3Dモデリング
(Blender、
3DS Maxなど)

EXPERT

3D Modeling
(Blender, 3DS Max,
etc.)

実装 (例)

IMPLEMENTATION EXAMPLES

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION
First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT
Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT
Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION
Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION
Assess outcomes and refine the design for improvement

On-street parking spaces
around Nashville
The University of Tennessee

Agora Maximus,
Tactical Urbanism Project
LAAB Collective + Signature Design Comm.

アセットとは？

WHAT IS AN ASSET ?

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

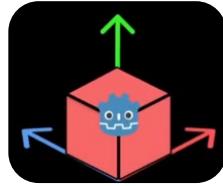
成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

定められたオブジェクトのことで、自分で選択して空間に配置し編集することが出来る

An asset is a predefined object that you can select, place, and edit freely within a space


木や植物
Trees and plants

操作可能キャラクター
Playable character

家具
Furnitures

家具
Primitive shapes

アセットの例
ASSETS EXAMPLES

ステップ1：現地観察と記録 フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION
First step in understanding the site

ステップ2：目標に基づくデザイン制作 参加者はミッションに基づいて空間をデザインする

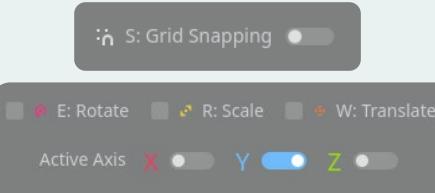
PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT
Participants design spaces based on given missions

ステップ3：開発 XXX

PHASE 3 : COLLABORATIVE MODELING
XXX

3Dシーン内のアセットを簡単に管理・整理・配置できる、 無料かつオープンソースのGodotエンジンプラグイン

Free and open-source Godot Engine plugin that lets you easily manage and place assets into your 3D scenes.


アセット管理 ASSET MANAGEMENT

アセットをドラッグ & ドロップ Drag And Drop Assets

コレクションにまとめる
コレクションでフィルタ
名前で検索
Group into collections
Filter by collections
Search by name

配置時にランダム変形 Random Transforms on Placement

S: スナップモード切替
S: To Toggle Snapping Mode

ワークショップの範囲 WORKSHOP SCOPE

スロープ配置 SLOPES PLACEMENT

アセットの変形が斜面や法線に反応
Assets Transforms react to slopes and other normals

Q: プレーン配置モード有効化
W: 仮想プレーン移動
Q: Enable Plane Placement Mode
W: Translate Virtual Plane

プレーン配置モード PLACE PLACEMENT MODE

仮想プレーンの法線と
原点を軸トグルで変更可能
Virtual Plane Normals and
Origin can be Modified using Axis Toggles

Terrain3D配置モード TERRAIN3D PLACEMENT MODE

アセットの種類 (例)

TYPES OF ASSETS (EXAMPLES)

ステップ 1: 現地観察と記録 フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

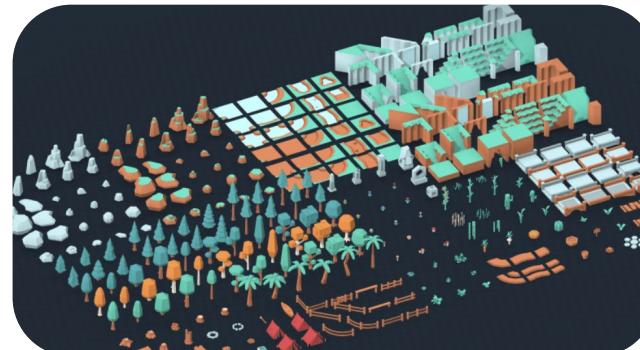
First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

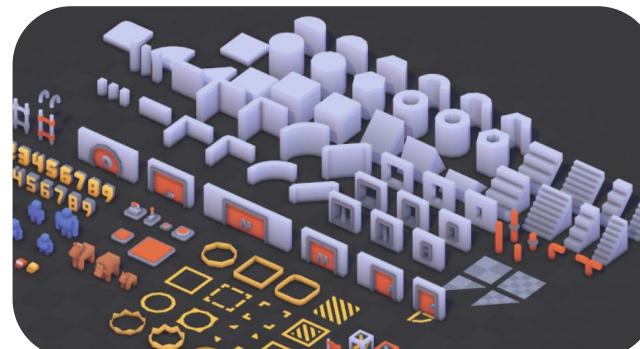


ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design



ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

家具
Furnitures

自然
Nature

家具
Primitive shapes

アセットの設置

ASSET PLACEMENT

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

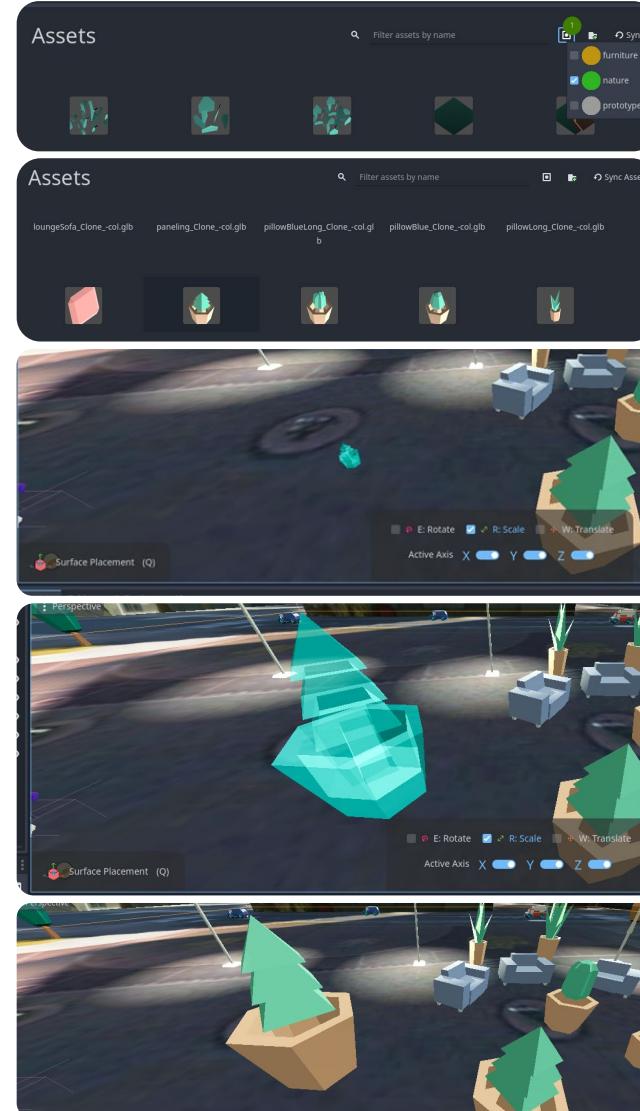
Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment



ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

① アセット種類の選択 (例 : nature)
Select asset category (example : nature)

② アセットの選択
Select asset

③ アセットの配置
Place asset

④ サイズや角度の調整
Adjust size and angle

⑤ 設置 (後で編集可能)
Confirm (later edit possible)

アセットの調整

ASSET AJUSTEMENT

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

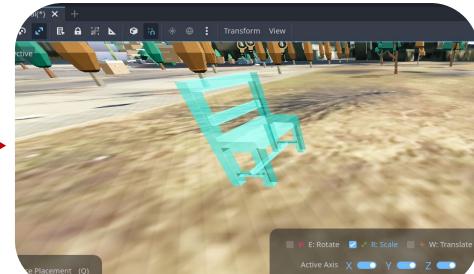
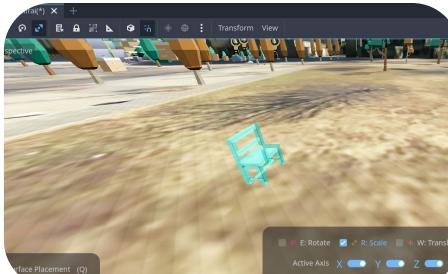
ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

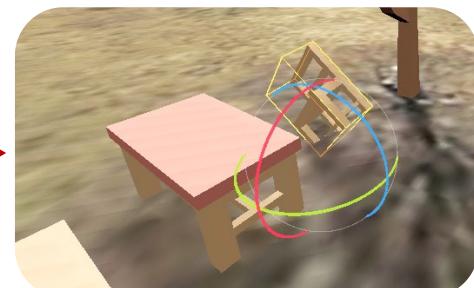
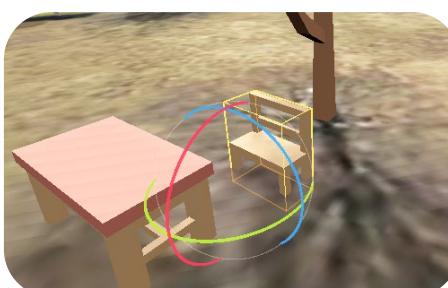


成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

設置前に調整 大きさ

Before placement adjustment
Size



設置後に調整 移動

After placement adjustment
Move


設置後に調整 回転

After placement adjustment
Rotation

設置後に調整 大きさ

After placement adjustment
Size

ミッション成果例

EXAMPLES OF COMPLETED MISSIONS

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

ミッション 1 木陰のある空間を デザインせよ

MISSION 1 Design a space with shade from trees

ミッション 2 滞在したくなるベンチを 設置せよ

MISSION 2 Install benches that make people want to stay

ミッション 3 木陰のある空間を デザインせよ

MISSION 3 Add features that create a feeling of coolness

ミッション 4 ピクニックしたくなる 広場をつくれ

MISSION 4 Create a plaza that invites picnics


ミッション 5 小さなマーケットができる 空間をデザインせよ

MISSION 5 Design a space suitable for a small market

ミッション 6 子供が楽しめる空間を つくれ

MISSION 6 Create a space where children can have fun

キャラクター操作

CHARACTER CONTROL

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

アセットを配置した空間をキャラクターを使って走り回れる

Run around the space where assets have been placed using a character

このモードではアセットの配置や編集は不可能

In this mode,
assets cannot be placed or edited

デザインした空間を利用者目線で観察して楽しむことが目的

The purpose is to explore and enjoy the designed space from a user's point of view

視点移動 (回転と拡大縮小)

Viewpoint movement
(rotation and zoom)

二段ジャンプ が可能

Double jump
available

疑似ワークショップ

MOCK WORKSHOP

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: アンケート、振り返り

成果を確認し、改善点を特定する

PHASE 5 : QUESTIONNAIRE AND REFLECTION

Assess outcomes and refine the design for improvement

アンケート、振り返り

QUESTIONNAIRE AND REFLECTION

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: 評価

成果を確認し、改善点を特定する

PHASE 5 : EVALUATION

Assess outcomes and refine the design for improvement

ステップ 1: 現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION

First step in understanding the site

ステップ 2: 目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする

PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT

Participants design spaces based on given missions

ステップ 3: Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT

Fostering teamwork and creativity through shared 3D design

ステップ 4: インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION

Emphasizes active engagement with the designed environment

ステップ 5: 評価

成果を確認し、改善点を特定する

PHASE 5 : EVALUATION

Assess outcomes and refine the design for improvement

アンケートの質問サンプル

Sample Questions from the Questionnaire

将来の夢、ビデオゲームへの関心、ITへの関心、ITスキルの自信、3Dソフト経験、都市計画への関心、今日の体験の楽しさ、印象に残ったこと、また参加したいか、理解度

Future dreams, Interest in video games
Interest in IT, Confidence in IT skills, Experience with 3D software, Interest in urban planning, Enjoyment of today's experience, Memorable impressions, Would you like to participate again?, Comprehension

ワークショップの満足度

創造性

(3Dモデルを使うことで意見は出しやすかったか)

再現性

(自分の思い描いた内容が再現できたか)

体験性

(3Dモデル、ワクワクした?)

アウトプットの質的向上 (発言量は増えた?)

教育性

(デジタルツールに使いなれた?)

まちづくり教育プログラムとしての有用性

(まちづくりの考え方を学べたか)

まちづくりに関心が強いか

愛着

(まちとみらいへの愛着がわいた?)

ソフトの使いやすさ

ソフト内の空間認識のしやすさ

ソフトの詳細性

ソフトの整合性

ワークショップの感想、要望

Satisfaction with the workshop

Creativity

(was it easier to express opinions?)

Reproducibility

(were you able to reproduce what you had envisioned?)

Experiential value

(did the 3D models excite you?)

Quantitative improvement in output

(did the number of remarks increase?)

Educational value

(were you able to make good use of digital tools?)

Educational value

(did you learn ways of thinking about community design?)

Usefulness as a community design education program

Did this spark your interest in community building?

Fostering attachment

(did you feel more attached to Minato Mirai?)

Usability of the software

Ease of spatial recognition in the software

Level of detail in the software

Consistency of the software

Impressions and requests regarding the workshop

この評価を研究にどう活用するか

HOW THIS EVALUATION WILL BE USED IN RESEARCH

ステップ1：現地観察と記録

フィールド理解の第一歩

PHASE 1 : FIELD OBSERVATION AND DOCUMENTATION
First step in understanding the site

ステップ2：目標に基づくデザイン制作

参加者はミッションに基づいて空間をデザインする
PHASE 2 : GOAL-ORIENTED DESIGN DEVELOPMENT
Participants design spaces based on given missions

ステップ3：Godotによる協働モデリング

共同作業と創造性を育む3Dデザイン学習

PHASE 3 : COLLABORATIVE MODELING WITH GODOT
Fostering teamwork and creativity through shared 3D design

ステップ4：インタラクティブな探索

設計環境への主体的な関与を重視

PHASE 4 : INTERACTIVE EXPLORATION
Emphasizes active engagement with the designed environment

ステップ5：評価

成果を確認し、改善点を特定する

PHASE 5 : EVALUATION
Assess outcomes and refine the design for improvement

全体を通して中学生の都市空間に対する意識の変化、 使用ソフトの中学生への適正を評価して改善案の提案に繋げる。 都市デザイン教育プログラムとしての有効性検証。

Assess changes in junior high school students' awareness of urban space throughout the program, and evaluate the suitability of the software for this age group, leading to proposals for improvements.
Also, verify the effectiveness of the program as urban design education.

仮説とKPI

HYPOTHESIS AND KEY PERFORMANCE INDICATORS (KPI)

本ワークショップで得られる操作ログ・提案・ふりかえり内容を分析し、 子ども向け都市設計ツールあり方を考察する。 本ソフトの改良案を提案する。

Analyze operation logs, proposals, and reflections obtained from this workshop to examine the appropriate form of urban design tools for children.
Propose improvements for the software.

Phase1,2でのGIS, MLIT Plateau, Blenderでのデータ準備から Godotへの変換評価（再現度の確認や操作性等）

Evaluate the data preparation process in Phase 1 and 2 (using GIS, MLIT Plateau, Blender) and the conversion to Godot (checking reproducibility and operability)

7

結論 CONCLUSION

結論

CONCLUSION

既存ワークショップとの比較 COMPARISON WITH EXISTING WORKSHOPS

実世界と仮想世界を組み合わせた実践的な設計体験を提供

Provides a practical design experience combining real and virtual worlds

ミッション形式で楽しみながら、論理的な課題解決能力を養う

Cultivates logical problem-solving skills through enjoyable mission formats

使用ソフトはGodot

Uses Godot as the software

ターゲットは中学生

Target participants: Junior high school students

報酬

REWARDS

Godotはオープンソースなのでワークショップで編集したデータを自宅でも操作できる。

家族や友達に説明できる

Since Godot is open-source, participants can continue operating the data edited during the workshop at home, and explain it to family and friends

チームで話し合いながら共同作業を進める体験

Experience of collaborative work through group discussions

想定・期待する成果 ANTICIPATED / EXPECTED OUTCOMES

FWによる中学生目線での現場の課題、長所の発見

Discovery of site-specific issues and strengths from the perspective of junior high school students through fieldwork

参加者による3Dモデリング体験での公共空間デザインの評価

Evaluation of public space design through participants' 3D modeling experience

参加者による3Dモデリング体験での空間への影響評価の評価

Assessment of the spatial impact of participants' 3D modeling design

中学生の創造的・論理的な空間思考力の育成の評価

Evaluation of the cultivation of creative and logical spatial thinking in students

自発的な都市空間提案の可視化と共有成果の評価

Visualization and sharing of spontaneous urban space proposals by participants

3Dモデリングソフトに対する使用性評価と改良ポイントの発見

Evaluation of usability of the 3D modeling software and identification of points for improvement

アンケート結果によるまちづくり、IT、 使用ソフトへの関心調査の評価

Survey evaluation of students' interest in community design, IT, and the software used (based on questionnaire results).

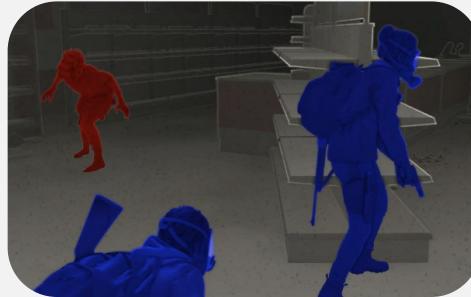
今後のまちづくり教育に対してWSの有用性の評価

Usefulness of the Workshop for Future Machizukuri Education

関連研究

RELATED RESEARCH

アクセシビリティを考慮したプレイスメイキング・シミュレーション：参加型都市デザインツールへの応用


ACCESSIBILITY IN PLACEMAKING SIMULATIONS: TOWARDS PARTICIPATORY URBAN DESIGN TOOLS

Xbox アダプティブ コントローラー

アダプティブコントロール Adaptive controls

Image : Microsoft Adaptive controller

アクセシビリティ機能 Accessibility features

Image : The Last of Us

移動制約をテーマとしたゲーム Games about reduced mobility

Image : Unaccessible

タクティカル・アーバニズムの火花

A SPARKLE FOR TACTICAL URBANISM

References

Silva, P. (2016). *Tactical urbanism: Towards an evolutionary cities' approach?*
Short-term / Long-term. 広島都心会議 | Urban Hiroshima 2030

デジタルツインのためのデジタルコミュニティ：市民参加の強化

A DIGITAL COMMUNITY FOR A DIGITAL TWIN: ENHANCING CITIZEN PARTICIPATION

アイ レベルGIS EYE-LEVEL GIS

オンラインコミュニティの実装

ONLINE COMMUNITY IMPLEMENTATION

ご清聴ありがとうございました

THANK YOU FOR YOUR ATTENTION